
Building Machine Learning 

Systems for the Age of Really 

Big Models

Horace He



The field has consolidated significantly

- “Many architectures” => “one” architecture (transformers)

- “Many folks training SOTA models” => a few companies training SOTA models



Different programming models are useful for different folks

- It doesn’t make that much sense to ask “is torch.compile faster than CUDA”?

- What might be useful if you’re just doing experiments might not be useful if you’re 

about to do a 1 million GPU run

- There is a fundamental tradeoff between

“more control” and “less control”



Why can’t a graph compiler do everything for me?

- Programming model is simple - put graph of operators in, get fast performance out!

- It’s the programming model that TorchInductor/XLA/tinygrad/many others are based 

around.

- It allows you to leverage performance improvements by experts for all users!

- They’re successful (and useful) in many cases, but folks often find them frustrating 

and difficult to use (especially at the frontier).



Introducing Horace’s Exciting Library (HEL)

It has a couple of cool features:

1. It doesn’t always work.

2. To address that, it has no documentation on when it will work except by DM’ing me on 

Twitter or reading my code.

3. In exchange, when you update the library, it may totally change what code works and 

what code doesn’t work (i.e. no backwards compatibility)

Are you interested in HEL?

Assuming that “work” = “it does my desired fusion”, this is describing graph 

compilers!



Asking Graph Compiler: “Will this function be fused into one kernel?”

Hopefully the graph 

compiler supports 

this fusion

Need to make sure 

my sequence of 

operators triggers 

the pattern-match 

Maybe the autotuning 

decided it would be 

better to not fuse it?
If you check the logs or 

the trace you can find 

out!



Asking Triton: “Will this function be fused into one kernel?” 

I wrote a Triton kernel
Kernel, not Kernels Therefore it’s 

one kernel



Performance is one thing, but “correctness” another

1. A bug was found where softmax gave significantly different results under compilation 

vs. without.

2. It was determined to only repro on CPUs but not GPUs.

3. It was determined that it only started reproing after v18 - prior to v18 it worked fine.

4. It was tracked down to <hardware vendor> adding a rewrite pass that pattern-

matched softmax to their special kernel (with subtly different numeric properties).

5. However, v19 of the library actually broke the hardware vendor’s pattern-matching 

through a different way of writing softmax, causing the bug to be “fixed”!

6. Perhaps in v20 the hardware vendor would refix the pattern-matching, causing the 

bug to show up again.







Find the right programming model for the right user!

Programming Model: The user must do X, and then we guarantee Y but hide away Z.

Lower-Level System

Programming 

Model!

All The Users



Examples of Programming Models

- Manual Memory Allocation vs Garbage Collection

- Garbage Collection asks nothing of users, but in exchange you also have no guarantees on when 

memory will be deallocated.

- Python vs. Compiled Languages

- Python (more or less) guarantees that your operations will be executed in order, they’ll always 

check their __dict__ object, etc.

- Kernel-Authoring vs. Graph Compilers

- You need to write a “kernel”, but in exchange they often guarantee you 1. one kernel launched, 2. 

How many HBM accesses are performed, etc.

Providing guarantees is an extremely powerful tool to empower users, 

but avoiding those guarantees is often how systems can provide value.



Graph Compilers vs. Kernel Authoring



FlexAttention

Guarantees:

1. It’s guaranteed to always results

in a fused attention kernel

2. It’s guaranteed to always have

the same memory properties as 

a fused attention kernel.

But:

1. We added a CPU implementation

2. We’re adding optimizations to 

take advantage of warp 

specialization.

3. We’re working on adding a FA3

backend.



The Right Programming Models >> The Right Implementation

- A programming model is how you separate the concerns of the user from the 

underlying implementation.

- An AI can write all the underlying code, but for the foreseeable future, it must interop 

with the user’s intent.


