Bullding Machine Learning
Systems for the Age of Really
Big Models

Horace He

STACK
MORE
LAYERS




The field has consolidated significantly

"Many architectures”™ => "one” architecture (transformers)
"Many folks training SOTA models™ => a few companies training SOTA models

Monopoly Monopsony
(One Seller, Many Buyers) (One Buyer, Many Sellers)

Seller 1 Seller 2 Seller 3

Single Seller

”~ v-' 2‘. ~
- o ‘o N
=2 - -




Different programming models are useful for different folks

It doesn't make that much sense to ask “is torch.compile faster than CUDA™?
What might be useful if you're just doing experiments might not be useful if you're
about to do a 1 million GPU run

There Is a fundamental tradeoff between

‘more control” and “less control” Performance vs Time Spent

Performance

Time Spent



Why can't a graph compiler do everything for me?

Programming model is simple - put graph of operators In, get fast performance out!
It's the programming model that Torchinductor/XLA/tinygrad/many others are based
around.

It allows you to leverage performance improvements by experts for all users!
They're successful (and useful) in many cases, but folks often find them frustrating
and difficult to use (especially at the frontier).



Introducing Horace's Exciting Library (HEL)

It has a couple of cool features:

1. It doesn't always work.

2. To address that, it has no documentation on when it will work except by DM'ing me on
Twitter or reading my code.

3. In exchange, when you update the library, it may totally change what code works and
what code doesn't work (i.e. no backwards compatibility)

Are you Interested in HEL?

Assuming that “work” = “it does my desired fusion”, this is describing graph
compilers!



Asking Graph Compiler: “Will this function be fused into one kernel?”

Mayhe the autotuning

::ftlgft(:plltu‘:(::lslr;fﬂ If you check the logs or
veed to make sure : :'Iu:'trace you can find
my sequence of ut
operators triggers

Hopefully the graph
compiier supports
this fusion

|7




Asking Triton: "Will this function be fused into one kernel?”

Kernel, not Kernels Therefore It's
one kernel

| wrote a Triton kernel

S

i i

P Sy |




Performance is one thing, but “correctness” another

1. A bug was found where softmax gave significantly different results under compilation
VS. without.

2. It was determined to only repro on CPUs but not GPUs.

3. It was determined that it only started reproing after v18 - prior to v18 it worked fine.
4. It was tracked down to <hardware vendor> adding a rewrite pass that pattern-
matched softmax to their special kernel (with subtly different numeric properties).

5. However, v19 of the library actually broke the hardware vendor's pattern-matching
through a different way of writing softmax, causing the bug to be “fixed"!

6. Perhaps In v20 the hardware vendor would refix the pattern-matching, causing the
bug to show up again.



Auto-vectorization 1s not a programming model

| think that the fatal tflaw with the approach the compiler team was trying to make work was best
diagnosed by 1. Foley, who's tull of great insights about this stutt: auto-vectorization is not a

programming model.

The problem with an auto-vectorizer is that as long as vectorization can fail (and 1t will), then 1f
you’'re a programmer who actually cares about what code the compiler generates for your program,
you must come to deeply understand the auto-vectorizer. Then, when 1t fails to vectorize code you
want to be vectorized, you can either poke it in the right ways or change your program in the right
ways so that it works for you again. This 1s a horrible way to program; i1t’s all alchemy and guesswork

and you need to become deeply specialized about the nuances of a single compiler’s implementation

—something you wouldn’t otherwise need to care about one bit.

And God help you when they release a new version of the compiler with changes to the auto-

vectorizer’s implementation.



AN H
" %& Sufficiently Smart Compiler

T

This 1s a classic argument often pulled out 1n a LanguagePissingMatch. The
gist 1s that the HighlevellLanguage H may be slower than the
LowLevellLanguage L, but given a SutficientlySmartCompiler this would not
be the case. Moreover, this hypothetical compiler could use the high-level
information available 1n language H to perform optimizing transtormations
which are simply not possible 1n L, thereby making an optimally-compiled H
even faster than an optimally-compiled L.

In reality, there are a few such compilers, such as the Stalin compiler for
Schemelanguage (which was never intended to be usable on huge,
production-level programs), but that's not the point. It's mostly an empty

argument that's trotted out whenever a language 1s put down for not being
AsFastAsCee.



Find the right programming model for the right user!

Programming Model: The user must do X, and then we guarantee Y but hide away Z.

All The Users

4 : N
Programming
Model!

" /

Lower-Level System




Examples of Programming Models

- Manual Memory Allocation vs Garbage Collection
- Garbage Collection asks nothing of users, but in exchange you also have no guarantees on when
memory will be deallocated.

- Python vs. Compiled Languages
- Python (more or less) guarantees that your operations will be executed in order, they'll always
check their dict object, etc.

- Kernel-Authoring vs. Graph Compilers
- You need to write a "kernel”, but in exchange they often guarantee you 1. one kernel launched, 2.
How many HBM accesses are performed, etc.

Providing guarantees Is an extremely powerful tool to empower users,
pbut avolding those guarantees Is often how systems can provide value.



Graph Compllers vs. Kernel Authoring

Graph Compilers Triton

Kernels
Kernels

Time Time



FlexAttention

Guarantees:

1. It's guaranteed to always results
In a fused attention kernel

2. It's guaranteed to always have
the same memory properties as
a fused attention kernel.

But:

1. We added a CPU implementation

2. We're adding optimizations to
take advantage of warp
specialization.

3. We're working on adding a FA3
backend.

Atention Variant Support

ghLorkoo& H B
L2 = [0 Y GR B

Nei



The Right Programming Models >> The Right Implementation

- A programming model iIs how you separate the concerns of the user from the

underlying implementation.
- An Al can write all the underlying code, but for the foreseeable future, It must interop

with the user’s intent.

Automating GPU Kernel Generation
with DeepSeek-R1 and Inference Time

Scaling

Feb 12, 2025 ) +73 Like Discuss (2)

The following prompt is sample user input for a relative positional embeddings attention kernel.

Please write a GPU attention kernel to support relative position encodings. Implement the relative positional encod
Use the following function to compute the relative positional encoding:
def relative_positional(score, b, h, g_1dx, kv_1idx):

return score + (g_idx - kv_1idx)

When implementing the kernel, keep in mind that a constant scaling factor 1.44269504 should be applied to the relat

gk = gk * gk_scale + rel_pos * 1.44269504



