
The Present and Future of
CUTLASS Tensor Core Programming
Vijay Thakkar, Senior Architect

SemiAnalysis Blackwell Hackathon - 2025/03/16

We want people to write custom kernels for this thing ->

CUTLASS
CUDA C++ Template Library for High Performance Linear Algebra

Tensor computations at all scopes and scales, decomposed into their “moving parts”

Open source: https://github.com/NVIDIA/cutlass

• 7K+ stars, 4M+ clones/month, 100+ contributors, and many active users

• Designed for off the shelf kernels AND custom kernel writers

• Peel away the layers as you need control

• Foundation of many OSS kernels such as FlashAttention 2 & 3, Machete, DeepSeek, Marlin etc.

https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass

CUTLASS

Custom kernel iceberg today

• Without hardware aware custom kernels we leave a
lot on the table

• Automatic compilers are still not “there” yet

• DeepSeek levels of co-design are a differentiator

• Almost certainly require custom kernels

Large unaddressed chasm

GTC Deep dive into Blackwell and CUTLASS details
Programming Blackwell Tensor Cores with CUTLASS [S72720]

• Come to out GTC talk for a Blackwell deep dive!!

• Deep dive into all new features of Blackwell and how to use them

• 2SM MMA + TMA

• TMEM

• CLC scheduler

• Preferred cluster shapes

• New warp-specialized kernel recipes

• Many SOL kernels already available in cutlass/examples
• Attention, GEMMs with various dtypes/fusions etc, different Blackwell features

• A new series of CuTe tutorials specifically for Blackwell

• Look out for cutlass/examples/cute/tutorial/*sm100.cu

But wait… where is the future part?

A shift to Python DSLs

CUTLASS 4.0 is coming!

• Performance parity with CUTLASS C++

• Dramatically reduced compile times compared to C++

• Much lower barrier to entry and usage

• Native integration with existing Python ecosystem

• Simpler for automatic LLM based kernel generation

>100x

C
o

m
p

il
e

 t
im

e
 (

m
s
)

CUTLASS 4.x

CuTe DSL (releasing at GTC)

• Intended to be a 1:1 analog of CuTe C++

• Designed for both productivity and peak performance

• Low level control with a clean programming model

• Support for all architectures starting with Ampere

More in the future …

• For higher levels of abstractions

Hierarchical exposure like CUTLASS C++

@cute.kernel
def vector_add_kernel(

gA: cute.Tensor,
gB: cute.Tensor,
gC: cute.Tensor,
cC: cute.Tensor, # coordinate tensor
shape: cute.Shape,
tv_layout: cute.Layout):

tidx, _, _ = cutlass.nvvm.thread_idx()
bidx, _, _ = cutlass.nvvm.block_idx()

slice for CTAs (logical id -> address)
cta_coord = ((None, None), bidx)
ctaA = gA[cta_coord] # (TileM,TileN)
ctaB = gB[cta_coord] # (TileM,TileN)
ctaC = gC[cta_coord] # (TileM,TileN)
ctaCrd = cC[cta_coord] # (TileM,TileN)

declare the atoms which will be used later for memory copy
copy_atom_ldg = cute.make_copy_atom(cute.nvgpu.CopyUniversalOp(), gA.element_type)
copy_atom_stg = cute.make_copy_atom(cute.nvgpu.CopyUniversalOp(), gC.element_type)

tiled_copy_A = cute.make_tiled_copy_tv(copy_atom_ldg, tv_layout[0], tv_layout[1])
thr_copy_A = tiled_copy_A.get_slice(tidx)
thrA = thr_copy_A.partition_S(ctaA)

repeat above for B

tiled_copy_C = cute.make_tiled_copy_tv(copy_atom_stg, tv_layout[0], tv_layout[1])
thr_copy_C = tiled_copy_C.get_slice(tidx)
thrC = thr_copy_C.partition_S(ctaC)

allocate fragments for gmem->rmem
frgA = cute.make_fragment(thrA.element_type, thrA.shape)
frgB = cute.make_fragment(thrB.element_type, thrB.shape)
frgC = cute.make_fragment(thrC.element_type, thrC.shape)

thrCrd = thr_copy_C.partition_S(ctaCrd)
Move data to reg address space
cute.copy(copy_atom_ldg, thrA, frgA)
cute.copy(copy_atom_ldg, thrB, frgB)

Load data before use. The compiler will optimize the copy and load
result = frgA.load() + frgB.load()

Save the results back to registers and copy the results back to gmem
frgC.store(result)
cute.copy(copy_atom_stg, frgC, thrC)

A pythonic analog to CuTe C++ built on CuTe IR

Introduction to CuTe Python DSL

• Reference/buffer semantics for granular control

• Correctness by construction

• Support for both dynamic and static shapes (and mixed)

• Support for both host and device code JIT

• Support for TMA as a first class citizen

• Metaprogramming looks just like imperative programming

• NumPy-style comprehensive documentation on docs.nvidia.com

Performance (as a % of architecture peak) of four different Blackwell dense GEMM

kernels developed in CuTe DSL with increasing levels of optimization

%
 o

f
p

e
a

k
 p

e
rf

o
rm

a
n

c
e

o

f
th

e
 h

a
rd

w
a

re
 o

n
 B

la
c

k
w

e
ll

Key Advantages of CuTe DSL

• Parity with CuTe C++ in interfaces and concepts

• Full freedom to design novel kernels

• No C++ templates!

• Blazing fast compile times

• Much better debug messages

• Intuitive metaprogramming that looks imperative

• Much faster prototyping loop

• Much wider auto-tuning space

• Significantly easier integration into python
frameworks

• JIT compilation with caching for reduced overhead

• No NVCC or CUDA toolkit dependencies

• Support for DLPack and Torch tensor formats

• Auto-tuning and benchmarking within the framework

• Testing code can just be written in PyTorch as well!

Getting Started

• GTC talk for Python DSL: Enable Tensor Core Programming in Python With CUTLASS 4.0 [S74639]

• Comprehensive tutorials from “Hello World” to advanced implementations

• Interactive Jupyter notebooks for hands-on learning

• Copy-paste ready examples for quick implementation

• API documentation with clear examples and use cases

Need to know

• CUTLASS C++ (2.x and 3.x) is here to stay!

• The DSL will be available GitHub repo for issues / bug fixes

• Provided as a pip wheel with nightly builds for prompt bug fixes

• CUTLASS 4.0 will deprecate the existing python interface for instantiating device wide GEMMs

Thank you and happy hacking!

