NVIDIA.

The Present and Future of
CUTLASS Tensor Core Programming
Vijay Thakkar, Senior Architect

SemiAnalysis Blackwell Hackathon - 2025/03/16

T
TR

N 1Y T T T

B 11T (1T
|i'!:||lg:::""'

A . tEEmIAaYn
- » » ’

We want people to write custom kernels for this =
T~
e
= C—
i e
B ey
Rl T
1 — == r
i : "
1 i 4
o ol ———at A5
1 B
| 1 h
| _ —
BZ =1
i N
' "~———-—Jlf
| o
| P
1 N
! .
| .
! sy |
1 =

J 1 J

NVIDIA Blackwell Architecture

|~'"=Ju_H'I' \f =18 ! I dlravware red ._I._| =5 :_1- L -.J._! L=

Blackwell Tensor Cores - tcgen05

« Z2x throughput vs Hopper Tensor Cores at IS0 clocks.
« Expanding Tensor Core execution to two SMs

« Fully asynchronous Tensor Core programming model

« Support for new 8b (MXFP8), 6b (MXFP6) and 4b (MXFP4) micro-scaled types
« MXFP8 | MXFP6 - 2x throughput vs Hopper FP8 at ISO clocks
« MXFP4 - 4x T"lr'i‘.LJ._’_]f" put vs Hopper FP8 at IS0 clocks

Tensor Memory (TMEM)
New memory on each SM with same capacity as the Reqgister File,

« TMEM based Tensor Core inputs and outputs; freeing registers for SIMT cores

New Scheduling Capabilities

« Ability to programmatically fetch Thread Block Clusters.

« Ability to launch CUDA grids with two Thread Block Cluster configurations.

NVIDIA GB200 Superchip
Two Blackwell GPUs and One Grace CPU

. NVIDIA

CUTLASS

Tensor computations at all scopes and scales, decomposed into their “moving parts”

Open source:

7K+ stars, 4M+ clones/month, 100+ contributors, and many active users
Designed for off the shelf kernels AND custom kernel writers
Peel away the layers as you need control

Foundation of many OSS kernels such as FlashAttention 2 & 3, Machete, DeepSeek, Marlin etc.

NVIDIA.

https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass

N\
o) .
@ N\ CUTLASS 3 Conceptual Hierarchy
®QQ \{\@ CUTLASS 3 computation hierarchy is not centered around the hardware hierarchy
o™ \‘bc’

Tiled MMA /Copy: Spatial Microkernel layer

Describes the complete spatial tiling of a math/copy operation (across threads and data)

Write canonical loops with arch specific instructions.

Collective layer: Temporal Microkernel layer
- Describes the complete temporal tiling of spatial microkernels and computing one output tile
+ Abstract complex arch-specific synchronization, warp-specialization, pipelining, and instruction interleaving

Kernel layer: Outermost loops around collectives
Conceptually: A collection of all threadblock/clusters in the grid

Responsible for load balancing across tiles, thread marshalling, grid planning, and arguments construction

Device layer: host side setup and interface

New builder features for Blackwell
Dynamic datatypes

- Some combinations of data types can be type erased using CollectiveOp = typename collective::CollectiveBuilders
arch::5m98, arch::0pClassTensorQOp,

float_ebmZ_1, LayoutA, 8,

loat_edm3_t, LayoutB, 8,

float,

Shape¢_128,_128,_64:, Shape<_1,_2,_1>,
| gemm: :collective: :StageCountAuto,

- The exact type encoding becomes a kernel argummeit gemm: :collective: :KernelScheduleAuto

>::CollectiveOp;

» These data types can configure the kernel at runtime

- Great for reducing binary size and compile times

- Does not have any performance penalty

using CollectiveOp = typename collective::CollectiveBuilder<

| _ arch::5m1688, arch: DpClassTensurUp,
» Static types can still be used type_erased_dynamic_float8_t, LayoutA, 8,

uwgﬁ,xwwmw' tyjh_eraged_.yﬂamlc_I*DatB_t, LayoutB, 8,

e Shape<_128,_128, _64>, Shape<int,int,_1>
\" A N . - — gemm: :collective: :StageCountAuto,

“ N\ Tensor Core
“ \ oo coloper davelome \ l

7
= | Z - | float

. ;m kP
e o '?\, 1 n: (<\)7 -\

v“:‘ 8 ¢ = " S 2 : ’
Ha \.,‘OI_).‘.“(. / s ,«,;'l K4 > A
sor Core\ () | = > g .
"-'f"' 2 Ilr\r.\‘;r: \ o) 2

. TN "

gemm: :collective: :KernelScheduleAuto
>::CollectiveOp;

Custom kernel iceberg today

Large unaddressed chasm

I <A NVIDIA.

« Without hardware aware custom kernels we leave a

lot on the table

- Automatic compilers are still not "there” yet

- DeepSeek levels of co-design are a differentiator

- Almost certainly require custom kernels

L i

Separte kernels for
everything = o

o >

e

Modifying CUTLASS
builder inputs

| ':'fi'ALf"‘ mdidf

! AN 4
) K 4&;
oy 7 ??? R

t"’

W
Y 2

&4 7

Mostly. cu stom
CUTLEASSkernels

Fully CUTLASS /
Cule kernels (FA3)

Finding new PTX
Instruction

s W

MMA M = 256

CTAM =128

CTAM= 128

MMA M = B4

MMA M =64

Blackwell Tensor Core

Expanding Tensor Core execution to 2 SMs

CTA N/ MMAN

B (SMEM on 5M 1)

WQMmIma.mma
Bd x M x K

(SMEM on SM 0)

A
(SMEM or RF

Blackwell

CTAM= 128

CTAM = 128

tcgenDS.mm o
acobxMNxK |'E

2
/ CTAK |

CTAN/MMAN

Blackwell expands Tensor Core instruction to 2 SMs.

Pairs of 2x1 CTAs issue MMA across 2 SMs
« 2x1 cluster = 1 CTA pair

« 2x2 cluster 2 2 CTA pairs in 1x2 layout

« 4x4 clusters = 8B CTA pairs in 2x4 layout

B matrix data is shared across 2 SMs; each SM provides one half.

A matrix and accumulator is split evenly, each SM provides one half.

CTA QO in the CTA pair is the “leader” CTA, and elects 1 thread issue the

MMA for both CTAs.

A NVIDIA I

// Construct the MMA grid coordinate from the CTA grid coordinate
auto mma_coord_vmnk = make_coord(

blockIdx.x % size<@>(cta_layout_vmnk), // Peer CTA coordinate
blockIdx.x / size<@>(cta_layout_vmnk), // MMA-M coordinate

blockIdx.y, // MMA-N coordinat
MMA.2SM + TMA.2SM) ’ /7 MMA-K coordinate

Blackwell GEMM

auto mma_coord = select<1,2,3>(mma_coord_vmnk) ;

// (MmaTile_M,MmaTile_K,Tiles_K)

Tensor gA = local_tile(mA, mma_tiler, mma_coord, Step<_1, X,_1={});
// (MmaTile_N,MmaTile_K,Tiles_K)

- Execute the cute: :gemm on the leader CTA. Tensor gB = local_tile(mB, mma_tiler, mma_coord, Step< X,_1,_1>{});
// (MmaTile_M,MmaTile_N)
That's it! Tensor gC = local_tile(mC, mma_tiler, mma_coord, Step<_1,_1, X>{});

auto mma_v = get(mma_coord_vmnk) ;
ThrMMA mma = tiled_mma.get_slice(mma_v); // Use Peer CTA coordinate

CTA O in 2CTA Qroup - Tensor tCgA = mma.partition_A(gA); // (MmaA, NumMma_M, NumMma_K, Tiles_K)
SM O Tensor tCgB = mma.partition_B(gB); // (MmaB, NumMma_N, NumMma_K, Tiles_K)
Mma Fragments TMEM Tensor tCgC = mma.partition_C(gC); // (MmaC, NumMma_M, NumMma_N)
_—
or
SMEM SM O Kblocks _ // Construct MMA Fragments (SMEM Descriptors + TMEM Tensor)

Tensor tCrA
Tensor tCrB
Tensor tCtC

mma.make_fragment_A(tCsA); // (1,NumMma_M, NumMma_K, Tiles_K)
mma.make_fragment_B(tCsB); // (1,NumMma_M, NumMma_K, Tiles_K)
mma.make_fragment_C(tCgC); // (C,HumMma_H.HumMma_H)

= AR

uint32_t elect_one_cta = get(cta_in_cluster_coord_vmnk) ==
CTA 1in 2CTA group
for (int k_tile = 6; k_tile < size<3>(tCgA); ++k_tile)
{

copy(tma_atom_A.with(tma_barrier), tAgA(_,k_tile), tAsA);
copy(tma_atom_B.with(tma_barrier), tBgB(_,k_tile), tBsB);

SM | // TMA sync

TMEM

thn:ks I
Accumulat
.... if (elect_one_cta)
gemm(tiled_mma, tCrA, tCrB, tCtC);

1 BB i s

I AnVIDIA ¢t cutlass/examples/cute/tutorial/04_mma_tma_2sm_sm160.cu

SMEM SM 1

MMA Tile M spans 2 CTAs

TA T

GTC Deep dive into Blackwell and CUTLASS details

Come to out GTC talk for a Blackwell deep divel!l

Deep dive into all new features of Blackwell and how to use them
2SM MMA + TMA
TMEM
CLC scheduler
Preferred cluster shapes
New warp-specialized kernel recipes

Many SOL kernels already available in
Attention, GEMMs with various dtypes/fusions etc, different Blackwell features

A new series of CuTe tutorials specifically for Blackwell
Look out for

NVIDIA.

< NVIDIA.

A
111111 |

?

'S
S
g,
Q.
Q
S
-
e
-
e
D
i
e
2
D
o
D
i
S

But wait...

Runtime: C++ vs. Python
B200 -- GEMM: M=N=K=8K -- FP16

CUTLASS 4.0 is coming!

A shift to Python DSLs

100%

15%

Performance parity with CUTLASS C++

50%

Relative Performance

Dramatically reduced compile times compared to C++ 25%

0%
Much lower barrier to entry and usage C++ Pvthon

Compile Time: C++ vs. Python
B200 -- GEMM: M=N=K=8K -- FP16

Native integration with existing Python ecosystem 20 000

Simpler for automatic LLM based kernel generation £
& 20,000
o
3 >100X
O
@)
10,000
v 180

Python

<ANVIDIA. I

CUTLASS 4.x

Intended to be a 1:1 analog of CuTe C++ For higher levels of abstractions
Designed for both productivity and peak performance
Low level control with a clean programming model

Support for all architectures starting with Ampere

NVIDIA.

@cute.kernel
def vector_add_kernel(
gA: cute.Tensor,

o oo T, Introduction to CuTe Python DSL

shape: cute.Shape, A pythonic analog to CuTe C++ built on CuTe IR

tv_layout: cute.Layout):

tidx, _, _ = cutlass.nvvm.thread_idx() _

bidx, _, _ = cutlass.nvvm.block_idx() - Reference/buffer semantics for granular control

slice for CTAs (logical id -> address) » Correctness by construction

cta_coord = ((None, None), bidx)

ctaA = gA[cta_coord # (TileM, TileN)
e i o, Support for both dynamic and static shapes (and mixed)
taC = gC[cta_coord] # (TileM, TileN) .

ctatrd - cOloca coord] ¢ (Tilen Tilen - Support for both host and device code JIT

declare the atoms which will be used later for memory copy @ SUppOrt fOr TMA dS d f|rSt CIaSS Citizen

copy_atom_ldg = cute.make_copy_atom(cute.nvgpu.CopyUniversalOp(), gA.element_type)

copy_atom_stg = cute.make_copy_atom(cute.nvgpu.CopyUniversalOp(), gC.element_type) o Metaprog ramming |OOkS jUSt ||ke imperative programming

tiled_copy_A = cute.make_tiled_copy_tv(copy_atom_ldg, tv_layout[0], tv_layout[1])
thr_copy_A = tiled_copy_A.get_slice(tidx)
thrA = thr_copy_A.partition_S(ctaA)

repeat above for B

- NumPy-style comprehensive documentation on docs.nvidia.com

— 100%
tiled_copy_C = cute.make_tiled_copy_tv(copy_atom_stg, tv_layout[0], tv_layout[1]) _% oc
thr_copy_C = tiled_copy_C.get_slice(tidx) S
thrC = thr_copy_C.partition_S(ctaC) m 90% = _~
§ 85% ,
allocate fragments for gmem->rmem = S 00
frgA = cute.make_fragment(thrA.element_type, thrA.shape) .%
frgB = cute.make_fragment(thrB.element_type, thrB.shape) _§ /9%
frgC = cute.make_fragment(thrC.element_type, thrC.shape) L 70%
o :c:) 65%
thrCrd = thr_copy_C.partition_S(ctaCrd) o
Move data to reg address space - 60%
cute.copy(copy_atom_1ldg, thrA, frgA) g 55%
cute.copy(copy_atom_1ldg, thrB, frgB) ‘E 5 0%
S Fe2I8E28833888araNgBIREEEIIBIGE I
Load data before use. The compiler will optimize the copy and load x H e A N®m®® YT ITDODDLOONNKN®®B O SS 2oy 888 BE L
result = frgA.load() + frgB.load() S _ o | o _ o | o
- 101 persistent non specialize e persistent non specialize = persistent specialize -—persistent specialize +tune
O
Save the results back to registers and copy the results back to gmem X

frqC.store(result) Performance (as a % of architecture peak) of four different Blackwell dense GEMM SANVIDIA.
cute.copy(copy_atom_stg, frgC, thrC) kernels developed in CuTe DSL with increasing levels of optimization I

N :“x-.c\ ;‘_ . —
Separte kernels for

everything © o
T ILE()R)|
A

Key Advantages of CuTe DSL

)
|

- torch.co

'?"

Modifying CUTLASS
buildﬁr INputs

- Parity with CuTe C++ in interfaces and concepts

- Full freedom to design novel kernels

& B 4%

" (I;;Zirﬁzrpazlta;fripile times ' M0d|fy|ng‘g?

- Much better debug messages COUTLASS 4.0 ksrnel'

- Intuitive metaprogramming that looks imperative .Q,* .

- Much faster prototyping loop | Full cu StOm o

- Much wider auto-tuning space CUTLASS 4.0 kernel

- Significantly easier integration into python MOSth;C‘UStOm

frameworks CUTCEASSkernels

- JIT compilation with caching for reduced overhead

- No NVCC or CUDA toolkit dependencies FU uy CUTLASS /

- Support for DLPack and Torch tensor formats

- Auto-tuning and benchmarking within the framework CUTe kernels (FA3)

- Testing code can just be written in PyTorch as welll Fl nd | ng NeW P-I-X
Instruction

Getting Started

GTC talk for Python DSL: Enable Tensor Core Programming in Python With CUTLASS 4.0 [S74639]
Comprehensive tutorials from “Hello World” to advanced implementations

Interactive Jupyter notebooks for hands-on learning

Copy-paste ready examples for quick implementation

APl documentation with clear examples and use cases

NVIDIA.

Need to know

CUTLASS C++ (2.x and 3.x) is here to stay!
The DSL will be available GitHub repo for issues / bug fixes
Provided as a pip wheel with nightly builds for prompt bug fixes

CUTLASS 4.0 will deprecate the existing python interface for instantiating device wide GEMMs

NVIDIA.

CUDA Developer Sessions

General CUDA Multi-GPU Programming
S/2571 -What's CUDA All About Anyways? S/72576 - Getting Started with Multi-GPU Scaling: Distributed Libraries
5/2897 - How To Write A CUDA Program: The Parallel Programming Edition 572579 - Going Deeper with Multi-GPU Scaling: Task-based Runtimes
CUDA Python 572578 - Advanced Multi-GPU Scaling: Communication Libraries
572450 - Accelerated Python: Tour of the Community and Ecosystem Performance Optimization
572448 - The CUDA Python Developer’s Toolbox 572683 - CUDA Technigues to Maximize Memory Bandwidth and Hide Latency
572449 - 1001 Ways to Write CUDA Kernels in Python 572685 - CUDA Technigues to Maximize Compute and Instruction Throughput
574639 - Enable Tensor Core Programming in Python With CuTe S72686 - CUDA Techniques to Maximize Concurrency and System Utilization
CUDA C++ 572687 - Get the Most Performance from Grace Hopper

S/72574 - Building CUDA Software at the Speed-of-Light
572572 - The CUDA C++ Developer's Toolbox
5/2575 - How You Should Write a CUDA C++ Kernel

Developer Tools
572527 - It's Easier than You Think - Debugging and Optimizing CUDA with Intelligent Developer Tools

Connect with the Experts
CWE72433 - CUDA Developer Best Practices
CWE73310 -Using NVIDIA CUDA Compiler Tool Chain for Productive GPGPU Programming
CWE72393 - What's in Your Developer Toolbox? CUDA and Graphics Profiling, Optimization, and Debugging Tools
CWE /5384 - Connect with Dr. Wen-mei Hwu, Author of Programming Massively Parallel Processors

=]

7

Siead

F

nvidia.com/qgtc/sessions/cuda-developer

@4 NVIDIA. I

< NVIDIA.

Thank you and happy hacking!

