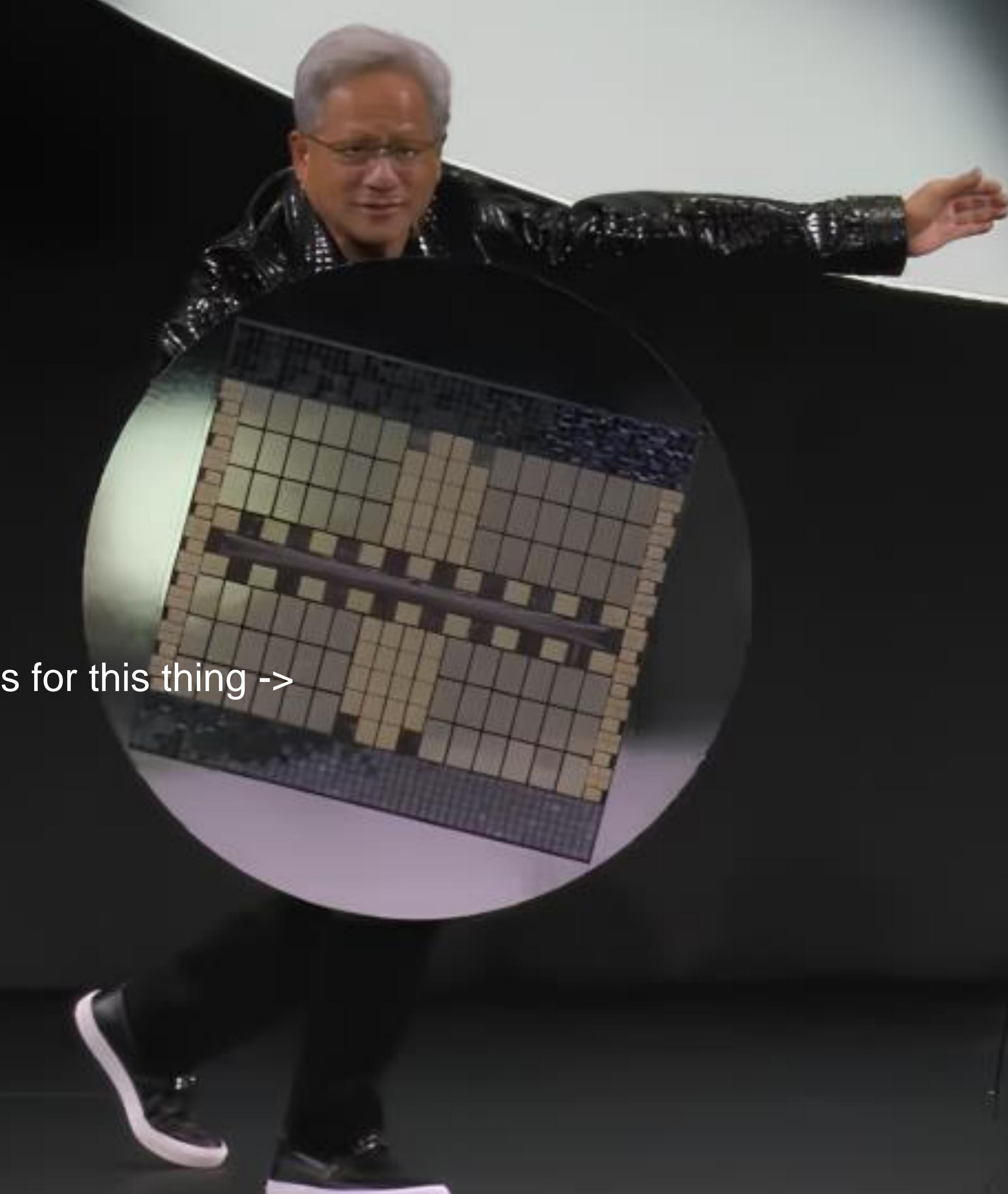


The Present and Future of CUTLASS Tensor Core Programming

Vijay Thakkar, Senior Architect

SemiAnalysis Blackwell Hackathon - 2025/03/16



We want people to write custom kernels for this thing ->

NVIDIA Blackwell Architecture

New Blackwell Hardware Features at a glance

Blackwell Tensor Cores - tcgen05

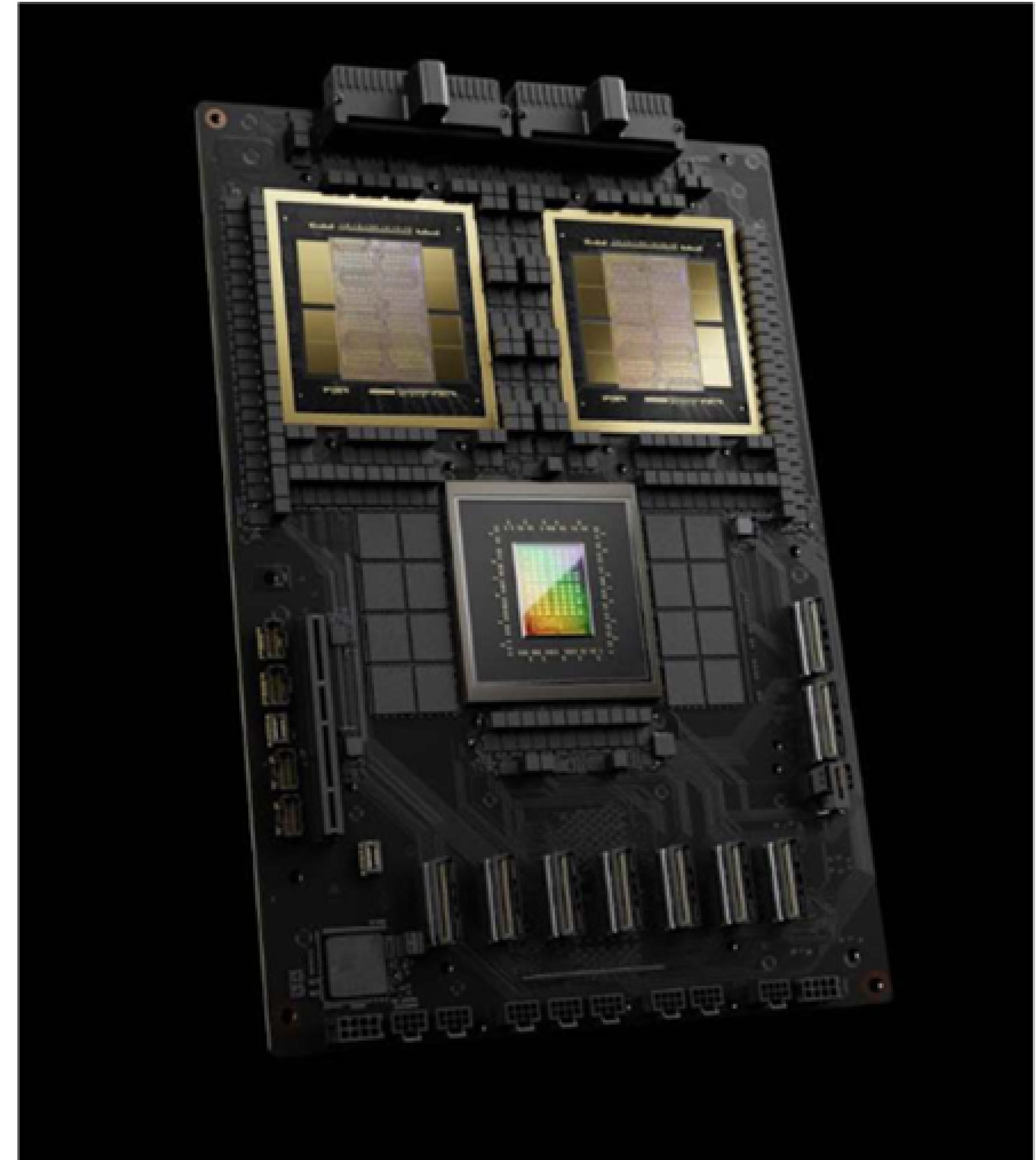
- 2x throughput vs Hopper Tensor Cores at ISO clocks.
- Expanding Tensor Core execution to two SMs
- Fully asynchronous Tensor Core programming model
- Support for new 8b (MXFP8), 6b (MXFP6) and 4b (MXFP4) micro-scaled types
 - MXFP8 / MXFP6 - 2x throughput vs Hopper FP8 at ISO clocks
 - MXFP4 - 4x throughput vs Hopper FP8 at ISO clocks

Tensor Memory (TMEM)

- New memory on each SM with same capacity as the Register File.
- TMEM based Tensor Core inputs and outputs; freeing registers for SIMT cores.

New Scheduling Capabilities

- Ability to programmatically fetch Thread Block Clusters.
- Ability to launch CUDA grids with two Thread Block Cluster configurations.



NVIDIA GB200 Superchip
Two Blackwell GPUs and One Grace CPU

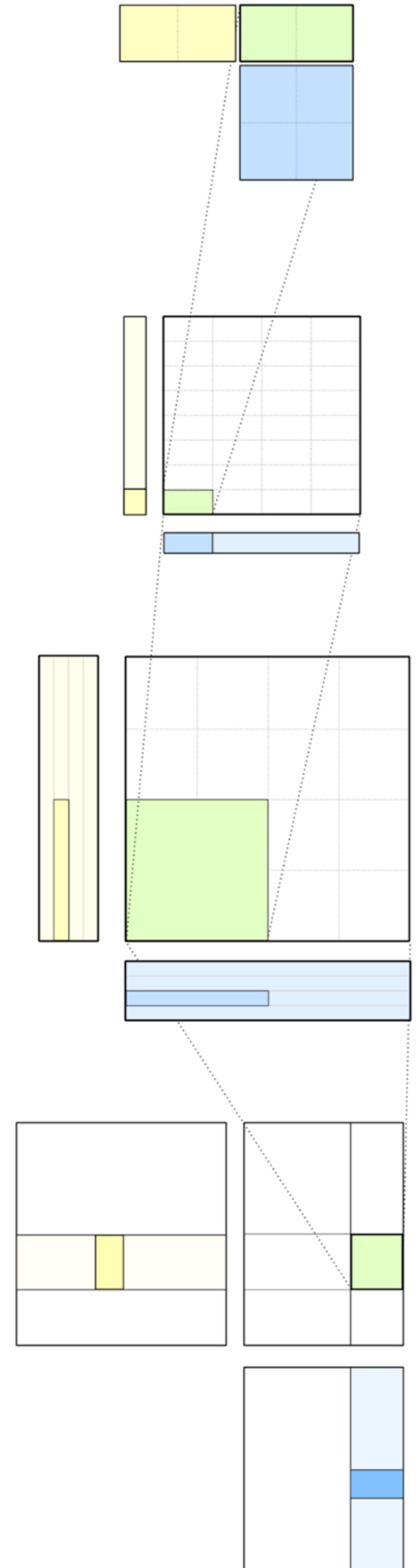
CUTLASS

CUDA C++ Template Library for High Performance Linear Algebra

Tensor computations at all scopes and scales, decomposed into their “moving parts”

Open source: <https://github.com/NVIDIA/cutlass>

- **7K+ stars, 4M+ clones/month, 100+ contributors**, and many active users
- Designed for off the shelf kernels AND custom kernel writers
- Peel away the layers as you need control
- Foundation of many OSS kernels such as FlashAttention 2 & 3, Machete, DeepSeek, Marlin etc.



No changes at all
for Blackwell!

CUTLASS 3 Conceptual Hierarchy

CUTLASS 3 computation hierarchy is not centered around the hardware hierarchy

Atom layer: Architecture instructions and associated meta-information

- Smallest set of threads and values that must participate in an architecture accelerated specified math/copy op

• **Tiled MMA/Copy:** Spatial Microkernel layer

- **Describes the complete spatial tiling of a math/copy operation (across threads and data)**
- Write canonical loops with arch specific instructions.

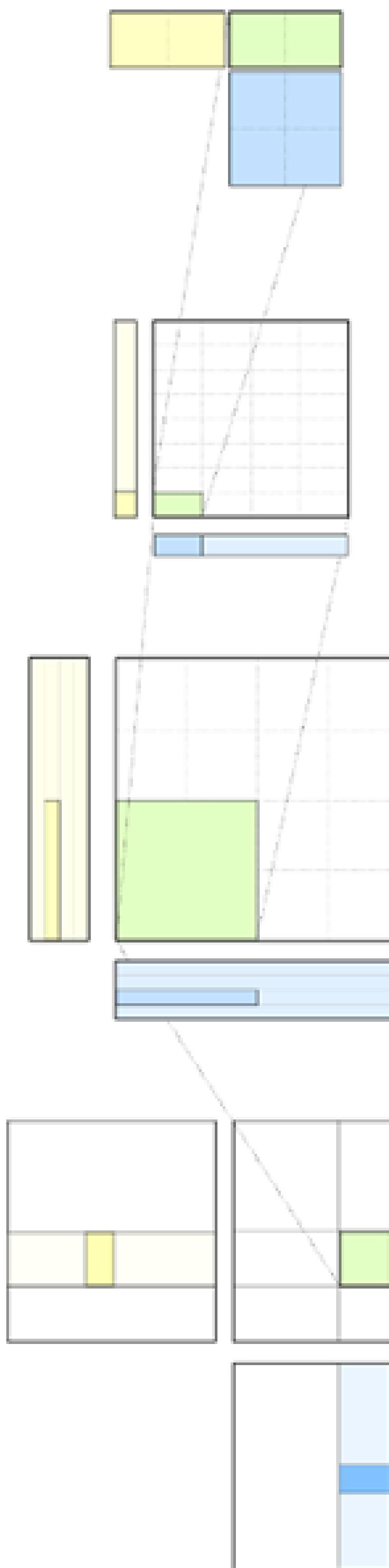
• **Collective layer:** Temporal Microkernel layer

- **Describes the complete temporal tiling of spatial microkernels and computing one output tile**
- Abstract complex arch-specific synchronization, warp-specialization, pipelining, and instruction interleaving

• **Kernel layer:** Outermost loops around collectives

- Conceptually: A collection of all threadblock/clusters in the grid
- Responsible for load balancing across tiles, thread marshalling, grid planning, and arguments construction

• **Device layer:** host side setup and interface



New builder features for Blackwell

Dynamic datatypes

- Some combinations of data types can be type erased
- These data types can configure the kernel at runtime
- The exact type encoding becomes a kernel argument
- Great for reducing binary size and compile times
- Does not have any performance penalty
- Static types can still be used


```
using CollectiveOp = typename collective::CollectiveBuilder<  
    arch::Sm90, arch::OpClassTensorOp,  
    float_e5m2_t, LayoutA, 8,  
    float_e4m3_t, LayoutB, 8,  
    float,  
    Shape<_128,_128,_64>, Shape<_1,_2,_1>,  
    gemm::collective::StageCountAuto,  
    gemm::collective::KernelScheduleAuto  
>::CollectiveOp;
```



```
using CollectiveOp = typename collective::CollectiveBuilder<  
    arch::Sm100, arch::OpClassTensorOp,  
    type_erased_dynamic_float8_t, LayoutA, 8,  
    type_erased_dynamic_float8_t, LayoutB, 8,  
    float,  
    Shape<_128,_128,_64>, Shape<int,int,_1>,  
    gemm::collective::StageCountAuto,  
    gemm::collective::KernelScheduleAuto  
>::CollectiveOp;
```

Custom kernel iceberg today

Large unaddressed chasm

- Without hardware aware custom kernels we leave a lot on the table
- Automatic compilers are still not “there” yet
- DeepSeek levels of co-design are a differentiator
- Almost certainly require custom kernels

Separate kernels for everything

`torch.compile()` go brr

Modifying CUTLASS builder inputs

???

???

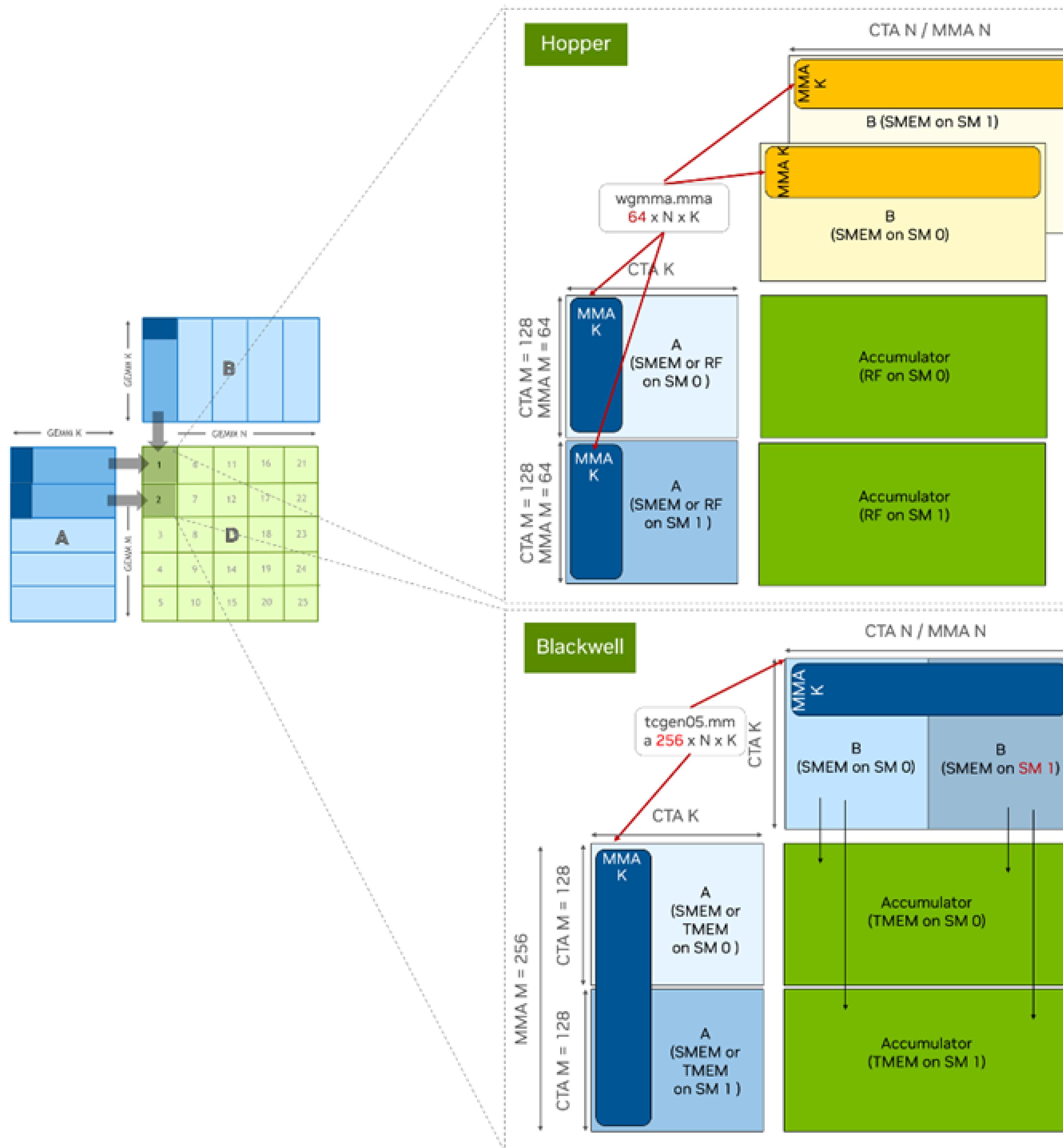
Mostly custom CUTLASS kernels

Fully CUTLASS / CuTe kernels (FA3)

Finding new PTX instruction

Blackwell Tensor Core

Expanding Tensor Core execution to 2 SMs



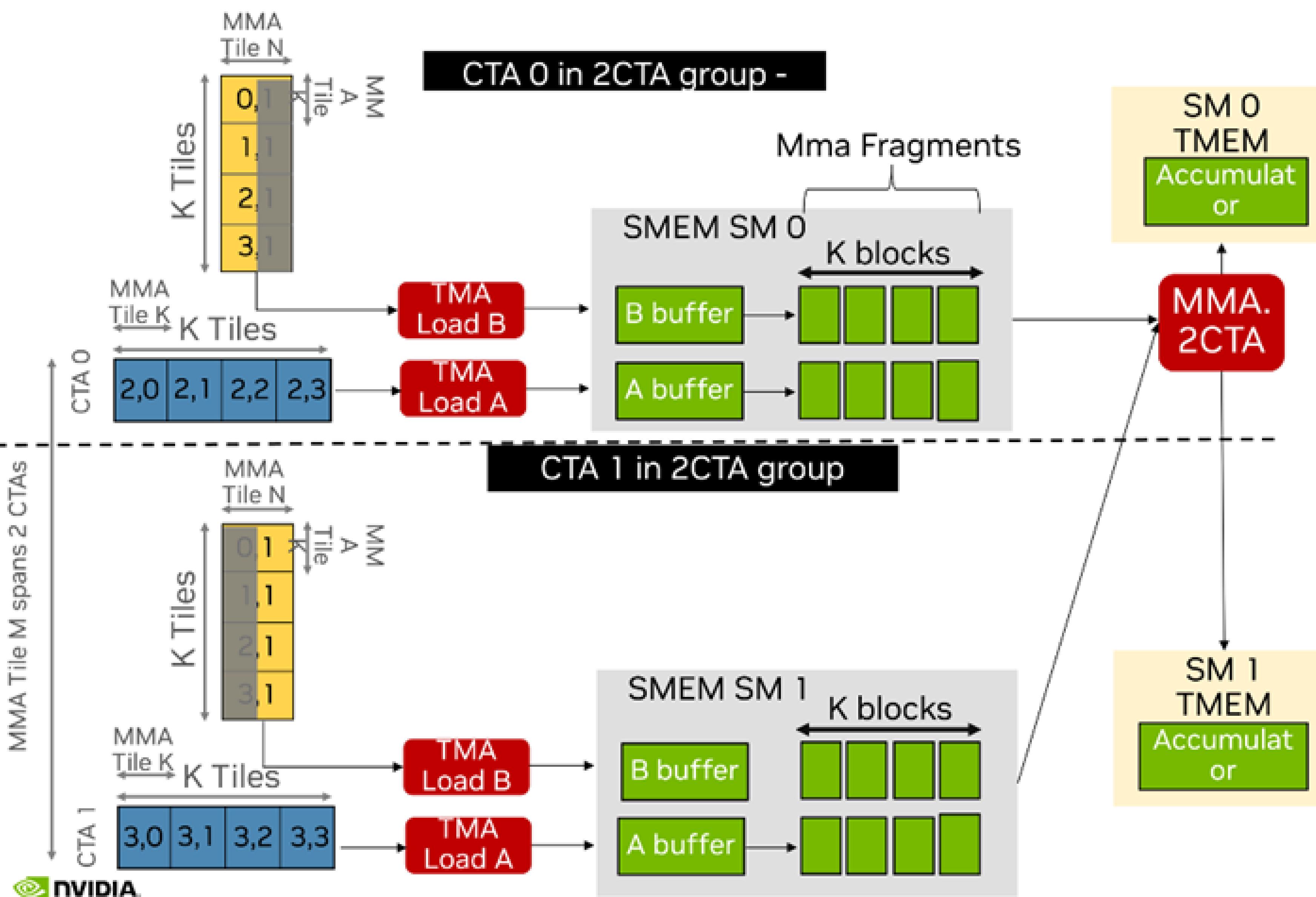
- Blackwell expands Tensor Core instruction to 2 SMs.
- Pairs of 2x1 CTAs issue MMA across 2 SMs
 - 2x1 cluster → 1 CTA pair
 - 2x2 cluster → 2 CTA pairs in 1x2 layout
 - 4x4 clusters → 8 CTA pairs in 2x4 layout
- B matrix data is shared across 2 SMs; each SM provides one half.
- A matrix and accumulator is split evenly, each SM provides one half.
- CTA 0 in the CTA pair is the “leader” CTA, and elects 1 thread issue the MMA for both CTAs.

MMA.2SM + TMA.2SM

Blackwell GEMM

- Execute the `cute::gemm` on the leader CTA.

That's it!



```

// Construct the MMA grid coordinate from the CTA grid coordinate
auto mma_coord_vmnk = make_coord(
    blockIdx.x % size<0>(cta_layout_vmnk), // Peer CTA coordinate
    blockIdx.x / size<0>(cta_layout_vmnk), // MMA-M coordinate
    blockIdx.y, // MMA-N coordinate
    _); // MMA-K coordinate

auto mma_coord = select<1,2,3>(mma_coord_vmnk);
// (MmaTile_M,MmaTile_K,Tiles_K)
Tensor gA = local_tile(mA, mma_tiler, mma_coord, Step<_1, X,_1>{});
// (MmaTile_N,MmaTile_K,Tiles_K)
Tensor gB = local_tile(mB, mma_tiler, mma_coord, Step< X,_1,_1>{});
// (MmaTile_M,MmaTile_N)
Tensor gC = local_tile(mC, mma_tiler, mma_coord, Step<_1,_1, X>{});

auto mma_v = get<0>(mma_coord_vmnk);
ThrMMA mma = tiled_mma.get_slice(mma_v); // Use Peer CTA coordinate
Tensor tCgA = mma.partition_A(gA); // (MmaA,NumMma_M,NumMma_K,Tiles_K)
Tensor tCgB = mma.partition_B(gB); // (MmaB,NumMma_N,NumMma_K,Tiles_K)
Tensor tCgC = mma.partition_C(gC); // (MmaC,NumMma_M,NumMma_N)

// Construct MMA Fragments (SMEM Descriptors + TMEM Tensor)
Tensor tCrA = mma.make_fragment_A(tCsA); // (1,NumMma_M,NumMma_K,Tiles_K)
Tensor tCrB = mma.make_fragment_B(tCsB); // (1,NumMma_M,NumMma_K,Tiles_K)
Tensor tCtC = mma.make_fragment_C(tCgC); // (C,NumMma_M,NumMma_N)

uint32_t elect_one_cta = get<0>(cta_in_cluster_coord_vmnk) == 0;

for (int k_tile = 0; k_tile < size<3>(tCgA); ++k_tile)
{
    copy(tma_atom_A.with(tma_barrier), tAgA(_,_k_tile), tAsA);
    copy(tma_atom_B.with(tma_barrier), tBgB(_,_k_tile), tBsB);
    // TMA sync

    if (elect_one_cta)
        gemm(tiled_mma, tCrA, tCrB, tCtC);
    // MMA sync
}
cutlass/examples/cute/tutorial/04\_mma\_tma\_2sm\_sm100.cu

```

GTC Deep dive into Blackwell and CUTLASS details

Programming Blackwell Tensor Cores with CUTLASS [S72720]

- Come to our GTC talk for a Blackwell deep dive!!
- Deep dive into all new features of Blackwell and how to use them
 - 2SM MMA + TMA
 - TMEM
 - CLC scheduler
 - Preferred cluster shapes
 - New warp-specialized kernel recipes
- Many SOL kernels already available in [cutlass/examples](#)
 - **Attention**, GEMMs with various dtypes/fusions etc, different Blackwell features
- A new series of CuTe tutorials specifically for Blackwell
 - Look out for [cutlass/examples/cute/tutorial/*sm100.cu](#)

But wait... where is the future part?

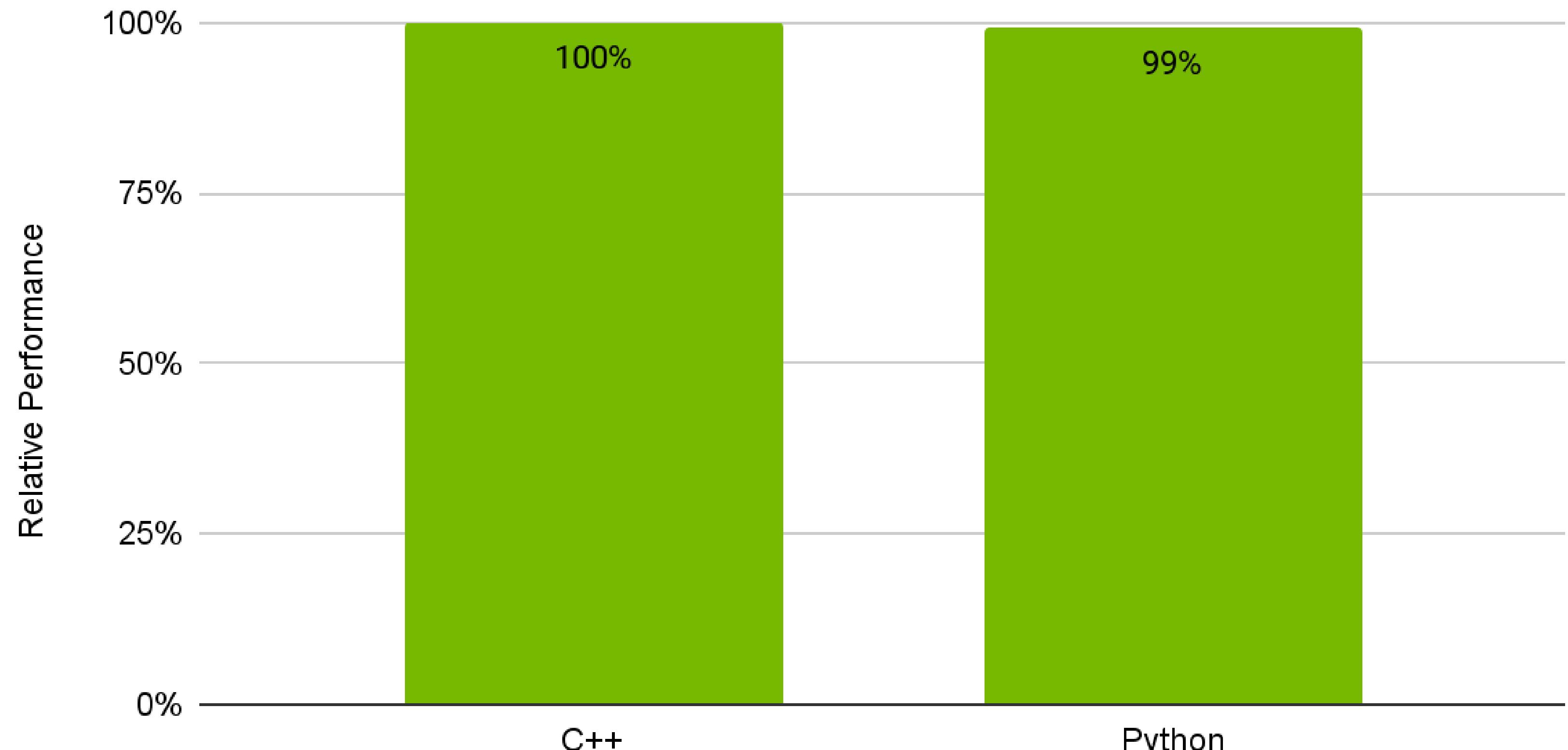
CUTLASS 4.0 is coming!

A shift to Python DSLs

- Performance parity with CUTLASS C++
- Dramatically reduced compile times compared to C++
- Much lower barrier to entry and usage
- Native integration with existing Python ecosystem
- Simpler for automatic LLM based kernel generation

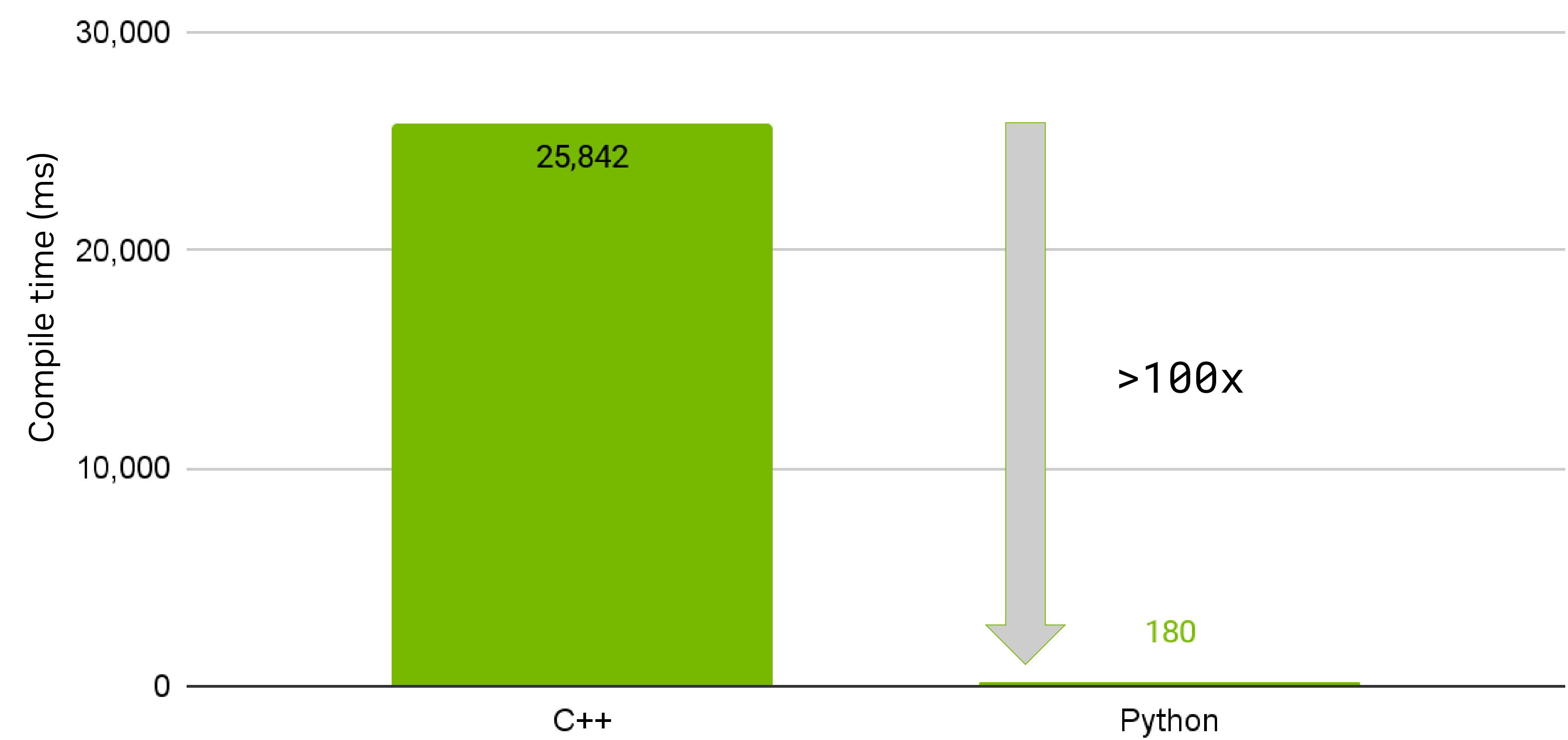
Runtime: C++ vs. Python

B200 -- GEMM: M=N=K=8K -- FP16



Compile Time: C++ vs. Python

B200 -- GEMM: M=N=K=8K -- FP16



CUTLASS 4.x

Hierarchical exposure like CUTLASS C++

CuTe DSL (releasing at GTC)

- Intended to be a 1:1 analog of CuTe C++
- Designed for both productivity and peak performance
- Low level control with a clean programming model
- Support for all architectures starting with Ampere

More in the future ...

- For higher levels of abstractions

```

@cute.kernel
def vector_add_kernel(
    gA: cute.Tensor,
    gB: cute.Tensor,
    gC: cute.Tensor,
    cC: cute.Tensor, # coordinate tensor
    shape: cute.Shape,
    tv_layout: cute.Layout):
    tidx, _, _ = cutlass.nvvm.thread_idx()
    bidx, _, _ = cutlass.nvvm.block_idx()

    # slice for CTAs (logical id -> address)
    cta_coord = ((None, None), bidx)
    ctaA = gA[cta_coord] # (TileM, TileN)
    ctaB = gB[cta_coord] # (TileM, TileN)
    ctaC = gC[cta_coord] # (TileM, TileN)
    ctaCrd = cC[cta_coord] # (TileM, TileN)

    # declare the atoms which will be used later for memory copy
    copy_atom_ldg = cute.make_copy_atom(cute.nvgpu.CopyUniversalOp(), gA.element_type)
    copy_atom_stg = cute.make_copy_atom(cute.nvgpu.CopyUniversalOp(), gC.element_type)

    tiled_copy_A = cute.make_tiled_copy_tv(copy_atom_ldg, tv_layout[0], tv_layout[1])
    thr_copy_A = tiled_copy_A.get_slice(tidx)
    thrA = thr_copy_A.partition_S(ctaA)
    # repeat above for B

    tiled_copy_C = cute.make_tiled_copy_tv(copy_atom_stg, tv_layout[0], tv_layout[1])
    thr_copy_C = tiled_copy_C.get_slice(tidx)
    thrC = thr_copy_C.partition_S(ctaC)

    # allocate fragments for gmem->rmem
    frgA = cute.make_fragment(thrA.element_type, thrA.shape)
    frgB = cute.make_fragment(thrB.element_type, thrB.shape)
    frgC = cute.make_fragment(thrC.element_type, thrC.shape)

    thrCrd = thr_copy_C.partition_S(ctaCrd)
    # Move data to reg address space
    cute.copy(copy_atom_ldg, thrA, frgA)
    cute.copy(copy_atom_ldg, thrB, frgB)

    # Load data before use. The compiler will optimize the copy and load
    result = frgA.load() + frgB.load()

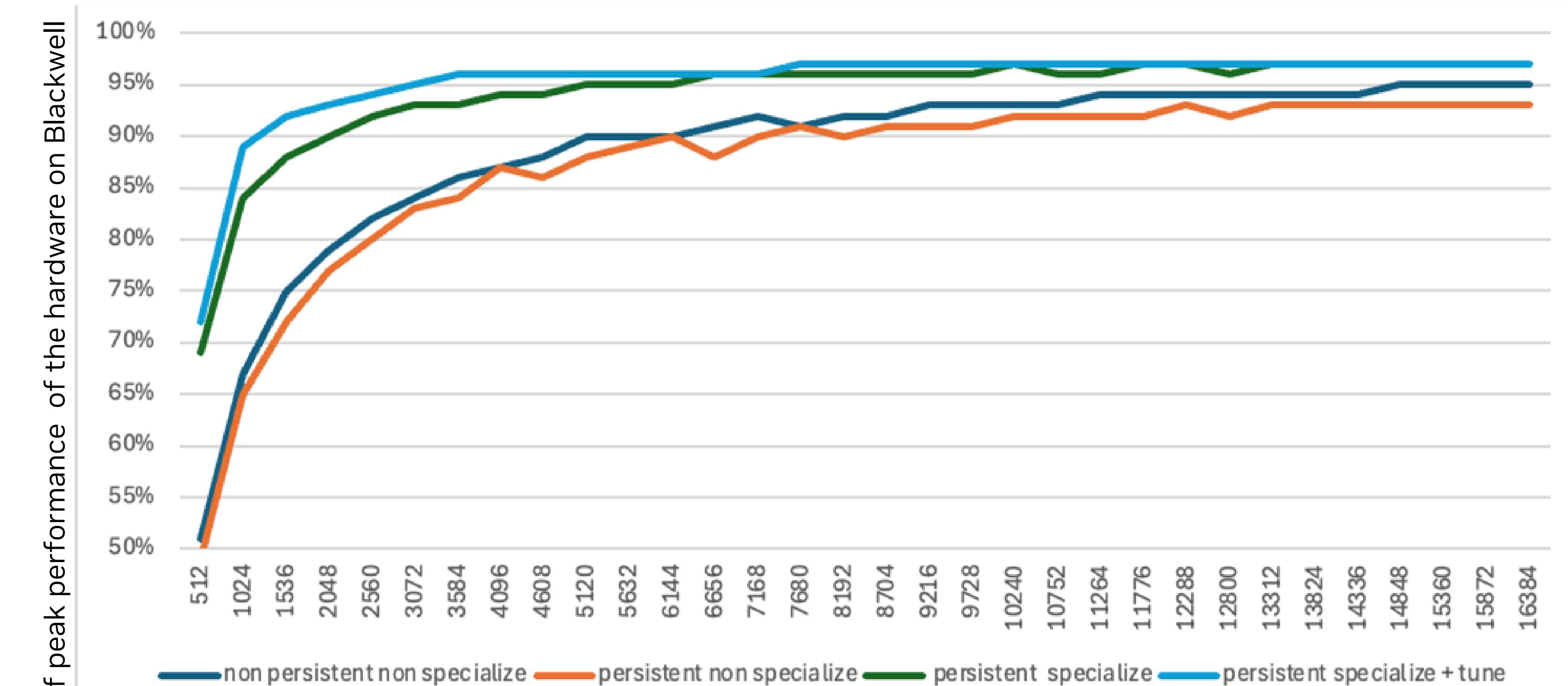
    # Save the results back to registers and copy the results back to gmem
    frgC.store(result)
    cute.copy(copy_atom_stg, frgC, thrC)

```

Introduction to CuTe Python DSL

A pythonic analog to CuTe C++ built on CuTe IR

- Reference/buffer semantics for granular control
- Correctness by construction
- Support for both dynamic and static shapes (and mixed)
- Support for both host and device code JIT
- Support for TMA as a first class citizen
- Metaprogramming looks just like imperative programming
- NumPy-style comprehensive documentation on docs.nvidia.com



Performance (as a % of architecture peak) of four different Blackwell dense GEMM kernels developed in CuTe DSL with increasing levels of optimization

Key Advantages of CuTe DSL

- Parity with CuTe C++ in interfaces and concepts
 - Full freedom to design novel kernels
- No C++ templates!
 - Blazing fast compile times
 - Much better debug messages
 - Intuitive metaprogramming that looks imperative
 - Much faster prototyping loop
 - Much wider auto-tuning space
- Significantly easier integration into python frameworks
 - JIT compilation with caching for reduced overhead
 - No NVCC or CUDA toolkit dependencies
 - Support for DLPack and Torch tensor formats
 - Auto-tuning and benchmarking within the framework
 - Testing code can just be written in PyTorch as well!

Separate kernels for everything

`torch.compile()` go brr

Modifying CUTLASS builder inputs

Modifying CUTLASS 4.0 kernel

Full custom CUTLASS 4.0 kernel

Mostly custom CUTLASS kernels

Fully CUTLASS / CuTe kernels (FA3)

Finding new PTX instruction

Getting Started

- GTC talk for Python DSL: Enable Tensor Core Programming in Python With CUTLASS 4.0 [**S74639**]
- Comprehensive tutorials from “Hello World” to advanced implementations
- Interactive Jupyter notebooks for hands-on learning
- Copy-paste ready examples for quick implementation
- API documentation with clear examples and use cases

Need to know

- CUTLASS C++ (2.x and 3.x) is here to stay!
- The DSL will be available GitHub repo for issues / bug fixes
- Provided as a pip wheel with nightly builds for prompt bug fixes
- CUTLASS 4.0 will deprecate the existing python interface for instantiating device wide GEMMs

CUDA Developer Sessions

General CUDA

[S72571](#) - What's CUDA All About Anyways?

[S72897](#) - How To Write A CUDA Program: The Parallel Programming Edition

CUDA Python

[S72450](#) - Accelerated Python: Tour of the Community and Ecosystem

[S72448](#) - The CUDA Python Developer's Toolbox

[S72449](#) - 1001 Ways to Write CUDA Kernels in Python

[S74639](#) - Enable Tensor Core Programming in Python With CuTe

CUDA C++

[S72574](#) - Building CUDA Software at the Speed-of-Light

[S72572](#) - The CUDA C++ Developer's Toolbox

[S72575](#) - How You Should Write a CUDA C++ Kernel

Developer Tools

[S72527](#) - It's Easier than You Think – Debugging and Optimizing CUDA with Intelligent Developer Tools

Connect with the Experts

[CWE72433](#) - CUDA Developer Best Practices

[CWE73310](#) - Using NVIDIA CUDA Compiler Tool Chain for Productive GPGPU Programming

[CWE72393](#) - What's in Your Developer Toolbox? CUDA and Graphics Profiling, Optimization, and Debugging Tools

[CWE75384](#) - Connect with Dr. Wen-mei Hwu, Author of *Programming Massively Parallel Processors*

Multi-GPU Programming

[S72576](#) - Getting Started with Multi-GPU Scaling: Distributed Libraries

[S72579](#) - Going Deeper with Multi-GPU Scaling: Task-based Runtimes

[S72578](#) - Advanced Multi-GPU Scaling: Communication Libraries

Performance Optimization

[S72683](#) - CUDA Techniques to Maximize Memory Bandwidth and Hide Latency

[S72685](#) - CUDA Techniques to Maximize Compute and Instruction Throughput

[S72686](#) - CUDA Techniques to Maximize Concurrency and System Utilization

[S72687](#) - Get the Most Performance from Grace Hopper

nvidia.com/gtc/sessions/cuda-developer

Thank you and happy hacking!